Influence of undercooling on phase-ordering kinetics in nematic liquid crystals

V. Popa-Nita* and S. Romano†

Istituto Nazionale per la Fisica della Materia, Dipartimento di Fisica ''A. Volta,'' Universita´ di Pavia, via A. Bassi 6,

I-27100 Pavia, Italy

(Received 11 September 1996; revised manuscript received 24 February 1997)

The undercooling effect on the phase-ordering dynamics of nematic liquid crystals is considered. We assume the nematic liquid crystal to have a scalar order parameter, and also suppose the system to be isothermal and initially temperature-quenched into the metastable regime of the isotropic phase. Based on planar domain wall solutions of the time-dependent Ginzburg-Landau equation, Bray and Humayun's theory of phase-ordering dynamics is generalized to include the undercooling effect on the late stage of growth. $[S1063-651X(97)05406-8]$

PACS number(s): 64.70.Md, 68.10.Jy

When a system is quenched from a high-temperature disordered phase to a lower temperature where its ordered phase is thermodynamically favored, it evolves in time toward the latter (phase-ordering process). It has been well established that in the late stages of ordering a scaling régime is entered, characterized by a single time-dependent length scale *L*(*t*), such that the domain structure is independent of time when lengths are scaled by $L(t)$ [1]. Very recently, there have been considerable theoretical $[2]$, experimental $[3]$ and computational $[4]$ efforts to understand the phase-ordering kinetics of nematic liquid crystals. So far, however, little effort has been devoted to the role of a volume driving force (external fields or undercooling), or a symmetry-breaking bias in the initial conditions $|5|$. The purpose of this Brief Report is to investigate the phase-ordering dynamics of a nematic liquid crystal when its isotropic liquid precursor is cooled quickly to a temperature where the nematic phase is thermodynamically stable and the isotropic one is metastable (supercooled) $(T^*$ < T < T_{NI} , where T_{NI} is the first order nematic-isotropic transition temperature, and T^* is the supercooling limit). When $T=T_{\text{NI}}$ (i.e., when the well depths of the bulk free energy density are equal) and for a nonconserved scalar order parameter, the motion of the interface (domain wall) is purely determined by its local curvature $[6]$ that generates a domain scale $L(t) \sim t^{1/2}$. In particular, the detailed shape of the bulk free energy density is not important $[7]$; the main role of the double-well free energy is to establish and maintain well-defined domain walls. For T^* $\lt T \lt T_{\text{NI}}$ (when the well depths of the bulk free energy density are not equal) the motion of the interface is determined not only by its local curvature but also by a volume driving force $[8]$. Our purpose is to investigate the effect of this volume driving force (in fact, the undercooling $\Delta T = T_{\text{NI}} - T$) on the phaseordering kinetics.

The order parameter for a nematic liquid crystal is a traceless symmetric second-rank tensor [9] $Q_{ii}(\mathbf{r},t)$ $= \phi(\mathbf{r},t)(3n_i n_j/2-\delta_{ij}/2)$ where the unit vector **n** is the nematic director, and $\phi(\mathbf{r},t)$ is the scalar order parameter. In the problem we consider, we shall suppose **n** to be fixed in space and time, so that the relevant physics is given by $\phi(\mathbf{r},t)$. Within the equal-constant approximation the appropriate Landau–de Gennes free energy functional is

$$
F[Q] = \int d^d x \left[\frac{1}{2}K \text{Tr} |\nabla Q|^2 + f_b(Q)\right],\tag{1}
$$

$$
f_b(Q) = a(T - T^*)\text{Tr}Q^2 - B\text{Tr}Q^3 + C(TrQ^2)^2. \tag{2}
$$

We take the dynamics to be given by the time-dependent Ginzburg-Landau (TDGL) equation $\beta \partial_t Q = -(\delta/\delta Q)F[Q]$ where the transport coefficient β is related to the rotational viscosity of the nematic. Scaling the variables in the following way [10]: $\phi = 6C\phi/B$, $\tau = 24a(T - T^*)C/B^2$, and $\overline{f}_b = 24^2 C^3 f_b / B^4$, and eliminating overbars, the corresponding dimensionless form of the TDGL equation is given by

$$
\frac{\partial \phi}{\partial t} - \nabla^2 \phi = -f'_b(\phi) = -2\,\tau\phi + 6\,\phi^2 - 4\,\phi^3. \tag{3}
$$

In this system of units the distances are scaled with $\xi = (24CK/B^2)^{1/2}$, and times with $t^* = 16C\beta/B^2$. The isotropic-nematic transition now takes place at $\tau=1$ to a nematic phase in which the order parameter $\phi=1$.

In the temperature region $0 < \tau < 1$, the time- and spaceindependent solutions of Eq. (3) occur at $\phi_1=0$, $\phi_2=3(1-\tau^*)/4$, and $\phi_3=3(1+\tau^*)/4$, where $\tau^*=(1$ $(1-8\tau/9)^{1/2}$. The solutions ϕ_1 and ϕ_3 correspond, respectively, to the isotropic and nematic minima of f_b , with f_b (nematic) $\leq f_b$ (isotrop); or, equivalently, the isotropic phase is metastable, whereas the nematic phase is stable.

Considering that ϕ depends on one spatial variable only (flat domain walls), and supposing that the front advances with velocity v , we look for solutions of the form $\phi(g,t) = \phi(g-vt) = \phi(g')$, where *g* is a coordinate normal to the interface. Equation (3) yields $\phi'' + v \phi' = f'_b(\phi)$, sub-*Permanent address: Faculty of Physics, University of Bucharest, ject to the boundary conditions $\phi(-\infty) = \phi_3$ and

P.O. Box MG-11, Bucharest-Magurele 76900, Romania. Electronic address: nita@scut.fizica.unibuc.ro

[†] Corresponding author. Electronic address: romano@pavia.infn.it

 $\phi(\infty) = \phi_1$. This ordinary differential equation has the solution $\phi(g') = \phi_3(1-\tanh g'/w_0)/2$, with the characteristic thickness of the interface $w_0 = \sqrt{2}/\phi_3$ and its velocity $v=3(3\tau^*-1)/2^{3/2}$. In the flat domain wall case the driving force for the nematic growth is the difference between isotropic and nematic minima of f_b , generated by the undercooling $\Delta \tau=1-\tau$.

In approximate treatments ("Gaussian closure" schemes) of Eq. (3) for the general case, a new field $m(\mathbf{x},t)$ is introduced, which varies smoothly on the domain scale, and whose zeros define the positions of the walls. Generalizing the Mazenko approximation $[11]$ (see also $[5]$), the transformation $\phi(m)$ is defined by the flat moving interface profile function which satisfies $\phi''(m) + v \phi'(m) = f'_b(\phi)$ with boundary conditions $\phi(-\infty) = \phi_3$ and $\phi(\infty) = \phi_1$. With this choice for $\phi(m)$, rewriting Eq. (3) in terms of *m*, gives

$$
\frac{\partial m}{\partial t} = \nabla^2 m - \frac{\phi''(m)}{\phi'(m)} (1 - |\nabla m|^2) - v. \tag{4}
$$

The principal role of the double-well "potential" $f_b(\phi)$ is to establish and maintain well-defined interfaces. It follows that the detailed form of $f_b(\phi)$ is irrelevant to the large-scale structure. Following Bray and Humayun $[7]$, we choose $\phi(m)$ to satisfy $\phi''(m) = -m \phi'(m)$, which is equivalent to a particular form of the potential (for a discussion of this approximation, see $[5]$. Locating the center of the wall at $m=0$, i.e., $\phi(0)=\phi_3/2$, we obtain the wall profile function $\phi(m) = \phi_3 \text{erfc}(m/\sqrt{2})/2$, where erfc is the complementary error function. After Fourier transformation, Eq. (4) becomes

$$
\frac{\partial m_{\mathbf{k}}(t)}{\partial t} = [-k^2 + a(t)]m_{\mathbf{k}}(t) - v \,\delta_{\mathbf{k},\mathbf{0}},\tag{5}
$$

where $a(t) = 1 - \langle |\nabla m|^2 \rangle$. Solving Eq. (5) for **k** \neq **0** components of *m*, one finds the equal-time pair correlation function in the scaling regime $C(12) = \arcsin(\gamma_0)/2\pi$, where 1 and 2 are usual shorthand for space-time points $(\overrightarrow{x_1}, t)$ and $(\overrightarrow{x_2}, t)$, and γ_0 is the normalized correlator $\gamma_0 = \exp(-r^2/8t)$. Thus, the $k \neq 0$ components of *m* are unchanged by the velocity or equivalently by the undercooling. In this case the well-depths of the "potential" $f_b(\phi)$ are equal, the only driving force is the interface curvature which generates the well-known $t^{1/2}$ growth law $[1]$.

In the scaling regime, solving Eq. (5) for $k=0$ components of *m*, we obtain the expectation value of ϕ ;

$$
\langle \phi \rangle = \frac{\phi_3}{2} \text{erfc} \left(\frac{\langle m \rangle}{(2C_0(0,t))^{1/2}} \right),
$$
 (6)

and the relative fluctuation,

$$
\frac{(\langle \phi^2 \rangle - \langle \phi \rangle^2)^{1/2}}{\langle \phi \rangle}
$$

=
$$
\left(\text{erfc} \left(- \frac{\langle m \rangle}{(2C_0(0,t))^{1/2}} \right) \right)^{1/2}
$$

$$
\times \left(\text{erfc} \left(\frac{\langle m \rangle}{(2C_0(0,t))^{1/2}} \right) \right)^{-1/2}, \qquad (7)
$$

where the argument of the complementary error function is given by

$$
\frac{\langle m \rangle}{(2C_0(0,t))^{1/2}} = \frac{m_0(0)}{(2\Delta)^{1/2}} (8\,\pi t)^{d/4}
$$

$$
-v \left(\frac{d}{8}\right)^{1/2} t^{d/4} \int_{t_0}^t dt' t' \, e^{-(d+2)/4},\qquad(8)
$$

with *d* the spatial dimensionality and $t_0 \sim (\Delta d)^{2/(d+2)}$ a short-time cutoff. The bias $m_0(0)$ in the initial Gaussian conditions gives a contribution of order $t^{d/4}$ for any *d*, but the contribution from the velocity (or equivalently from the undercooling) is $t^{1/2}$ for $d < 2$ (when times of order *t* dominate the integral in Eq. (8), $t^{1/2}$ ln*t*/*t*₀ for *d*=2, and $t^{d/4}$ for *d*>2 (when times of order t_0 dominate the integral). Thus, for large t , the velocity (or the undercooling) dominates over $m_0(0)$ for $d \le 2$ (continues to have an effect at late times), whereas for $d > 2$ both terms are of the same order (the velocity has all its effect at early times of order t_0).

It is to be noted that the introduction of a magnetic field has the same consequence in the sense that the symmetric double-well potential also becomes asymmetric, which generates a volume driving force of the interface. For this reason our results are similar to those obtained in $[5]$. The two main approximations used in this paper involve the consideration of a scalar order parameter field and the decoupling of the temperature field. Nematic liquid crystals are described by a nonconserved traceless symmetric tensor field. The presence of the inversion symmetry $(n \rightarrow -n)$ means that, in addition to the monopole defects of the $O(3)$ model, the nematic also possesses stable $\frac{1}{2}$ string defects in which the director rotates through π on encircling the string. The presence of such defects generates a k^{-5} structure factor tail at large $kL(t)$ $[2]$. The thermal coupling (including the effect of the latent heat emission at the interface) can have profound consequences $|12|$. We shall address this aspect of the problem in a future paper.

V.P.N. would like to acknowledge a visit to the Physics Department of Pavia University, which was funded by the Italian Consiglio Nazionale delle Ricerche (CNR); scientific hospitality and financial support are gratefully acknowledged.

- [1] A. J. Bray, Physica A 194, 41 (1993); Adv. Phys. 43, 357 $(1994).$
- [2] A. J. Bray, S. Puri, R. E. Blundell, and A. M. Somoza, Phys. Rev. E 47, 2261 (1993).
- [3] A. P. Y. Wong, P. Wiltzius, R. G. Larson, and B. Yurke, Phys. Rev. E 47, 2683 (1993).
- [4] M. Zapotocky, P. M. Goldbart, and N. Goldenfeld, Phys. Rev. E 51, 1216 (1995).
- @5# J. A. N. Filipe, A. J. Bray, and S. Puri, Phys. Rev. E **52**, 6082 $(1995).$
- [6] S. M. Allen and J. W. Cahn, Acta Metall. **27**, 1085 (1979).
- $[7]$ A. J. Bray and K. Humayun, Phys. Rev. E 48, 1609 (1993) .
- [8] V. Popa-Nita and T. J. Sluckin, J. Phys. (France) II 6, 873 $(1996).$
- @9# P. G de Gennes and J. Prost, *The Physics of Liquid Crystals*, 2nd ed. (Oxford University Press, Oxford, 1993).
- [10] A. K. Sen and D. E. Sullivan, Phys. Rev. A 35, 1391 (1987).
- [11] G. F. Mazenko, Phys. Rev. B 42, 4487 (1990).
- [12] R. J. Braun, G. B. McFadden, and S. R. Coriell, Phys. Rev. E 49, 4336 (1994).