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Influence of undercooling on phase-ordering kinetics in nematic liquid crystals
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The undercooling effect on the phase-ordering dynamics of nematic liquid crystals is considered. We assume
the nematic liquid crystal to have a scalar order parameter, and also suppose the system to be isothermal and
initially temperature-quenched into the metastable regime of the isotropic phase. Based on planar domain wall
solutions of the time-dependent Ginzburg-Landau equation, Bray and Humayun’s theory of phase-ordering
dynamics is generalized to include the undercooling effect on the late stage of growth.
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When a system is quenched from a high-temperature
ordered phase to a lower temperature where its ordered p
is thermodynamically favored, it evolves in time toward t
latter ~phase-ordering process!. It has been well establishe
that in the late stages of ordering a scaling re´gime is entered,
characterized by a single time-dependent length scaleL(t),
such that the domain structure is independent of time w
lengths are scaled byL(t) @1#. Very recently, there have bee
considerable theoretical@2#, experimental@3# and computa-
tional @4# efforts to understand the phase-ordering kinetics
nematic liquid crystals. So far, however, little effort has be
devoted to the role of a volume driving force~external fields
or undercooling!, or a symmetry-breaking bias in the initia
conditions@5#. The purpose of this Brief Report is to inve
tigate the phase-ordering dynamics of a nematic liquid cr
tal when its isotropic liquid precursor is cooled quickly to
temperature where the nematic phase is thermodynamic
stable and the isotropic one is metastable~supercooled!
(T*,T,TNI , whereTNI is the first order nematic-isotropi
transition temperature, andT* is the supercooling limit!.
When T5TNI ~i.e., when the well depths of the bulk fre
energy density are equal! and for a nonconserved scalar o
der parameter, the motion of the interface~domain wall! is
purely determined by its local curvature@6# that generates a
domain scaleL(t);t1/2. In particular, the detailed shape o
the bulk free energy density is not important@7#; the main
role of the double-well free energy is to establish and ma
tain well-defined domain walls. ForT*,T,TNI ~when the
well depths of the bulk free energy density are not equal! the
motion of the interface is determined not only by its loc
curvature but also by a volume driving force@8#. Our pur-
pose is to investigate the effect of this volume driving for
~in fact, the undercoolingDT5TNI2T) on the phase-
ordering kinetics.

The order parameter for a nematic liquid crystal is
traceless symmetric second-rank tensor@9# Qi j (r ,t)
5f(r ,t)(3ninj /22d i j /2) where the unit vectorn is the nem-
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atic director, andf(r ,t) is the scalar order parameter. In th
problem we consider, we shall supposen to be fixed in space
and time, so that the relevant physics is given byf(r ,t).
Within the equal-constant approximation the appropri
Landau–de Gennes free energy functional is

F@Q#5E ddx@ 1
2KTru¹Qu21 f b~Q!#, ~1!

f b~Q!5a~T2T* !TrQ22BTrQ31C~TrQ2!2 . ~2!

We take the dynamics to be given by the time-depend
Ginzburg-Landau~TDGL! equationb] tQ52(d/dQ)F@Q#
where the transport coefficientb is related to the rotationa
viscosity of the nematic. Scaling the variables in the follo
ing way @10#: f56Cf/B, t524a(T2T* )C/B2, and
f̄ b5242C3f b /B

4, and eliminating overbars, the correspon
ing dimensionless form of the TDGL equation is given by

]f

]t
2¹2f52 f b8~f!522tf16f224f3. ~3!

In this system of units the distances are scaled w
j5(24CK/B2)1/2, and times with t*516Cb/B2. The
isotropic-nematic transition now takes place att51 to a
nematic phase in which the order parameterf51.

In the temperature region 0,t,1, the time- and space
independent solutions of Eq.~3! occur at f150,
f253(12t* )/4, and f353(11t* )/4, where t*5(1
28t/9)1/2. The solutionsf1 and f3 correspond, respec
tively, to the isotropic and nematic minima off b , with
f b(nematic), f b(isotrop); or, equivalently, the isotropi
phase is metastable, whereas the nematic phase is stab

Considering thatf depends on one spatial variable on
~flat domain walls!, and supposing that the front advanc
with velocity v, we look for solutions of the form
f(g,t)5f(g2vt)5f(g8), whereg is a coordinate norma
to the interface. Equation~3! yieldsf91vf85 f b8(f), sub-
ject to the boundary conditionsf(2`)5f3 andst,
7779 © 1997 The American Physical Society
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f(`)5f1. This ordinary differential equation has the sol
tion f(g8)5f3(12tanhg8/w0)/2, with the characteristic
thickness of the interfacew05A2/f3 and its velocity
v53(3t*21)/23/2. In the flat domain wall case the drivin
force for the nematic growth is the difference between i
tropic and nematic minima off b , generated by the under
coolingDt512t.

In approximate treatments~‘‘Gaussian closure’’ schemes!
of Eq. ~3! for the general case, a new fieldm(x,t) is intro-
duced, which varies smoothly on the domain scale,
whose zeros define the positions of the walls. Generaliz
the Mazenko approximation@11# ~see also@5#!, the transfor-
mationf(m) is defined by the flat moving interface profi
function which satisfiesf9(m)1vf8(m)5 f b8(f) with
boundary conditionsf(2`)5f3 andf(`)5f1. With this
choice forf(m), rewriting Eq.~3! in terms ofm, gives

]m

]t
5¹2m2

f9~m!

f8~m!
~12u¹mu2!2v. ~4!

The principal role of the double-well ‘‘potential’’f b(f) is to
establish and maintain well-defined interfaces. It follows t
the detailed form off b(f) is irrelevant to the large-scal
structure. Following Bray and Humayun@7#, we choose
f(m) to satisfyf9(m)52mf8(m), which is equivalent to
a particular form of the potential~for a discussion of this
approximation, see@5#!. Locating the center of the wall a
m50, i.e.,f(0)5f3/2, we obtain the wall profile function
f(m)5f3erfc(m/A2)/2, where erfc is the complementa
error function. After Fourier transformation, Eq.~4! becomes

]mk~ t !

]t
5@2k21a~ t !#mk~ t !2vdk,0 , ~5!

wherea(t)512^u¹mu2&. Solving Eq.~5! for kÞ0 compo-
nents ofm, one finds the equal-time pair correlation functio
in the scaling re´gimeC(12)5arcsin(g0)/2p, where 1 and 2
are usual shorthand for space-time points (x1W ,t) and (x2W ,t),
andg0 is the normalized correlatorg05exp(2r2/8t). Thus,
thekÞ0 components ofm are unchanged by the velocity o
equivalently by the undercooling. In this case the well-dep
of the ‘‘potential’’ f b(f) are equal, the only driving force i
the interface curvature which generates the well-knownt1/2

growth law @1#.
In the scaling re´gime, solving Eq.~5! for k50 compo-

nents ofm, we obtain the expectation value off;

^f&5
f3

2
erfcS ^m&

„2C0~0,t !…
1/2D , ~6!

and the relative fluctuation,
-

d
g

t

s

~^f2&2^f&2!1/2

^f&

5S erfcS 2
^m&

„2C0~0,t !…
1/2D D 1/2

3S erfcS ^m&
„2C0~0,t !…

1/2D D 21/2

, ~7!

where the argument of the complementary error function
given by

^m&
~2C0~0,t !!1/2

5
m0~0!

~2D!1/2
~8pt !d/4

2vS d8D
1/2

td/4E
t0

t

dt8t82~d12!/4, ~8!

with d the spatial dimensionality andt0;(Dd)2/(d12) a
short-time cutoff. The biasm0(0) in the initial Gaussian con
ditions gives a contribution of ordertd/4 for any d, but the
contribution from the velocity~or equivalently from the un-
dercooling! is t1/2 for d,2 ~when times of ordert dominate
the integral in Eq.~8!, t1/2lnt/t0 for d52, andtd/4 for d.2
~when times of ordert0 dominate the integral!. Thus, for
large t, the velocity ~or the undercooling! dominates over
m0(0) for d<2 ~continues to have an effect at late times!,
whereas ford.2 both terms are of the same order~the ve-
locity has all its effect at early times of ordert0).

It is to be noted that the introduction of a magnetic fie
has the same consequence in the sense that the symm
double-well potential also becomes asymmetric, which g
erates a volume driving force of the interface. For this rea
our results are similar to those obtained in@5#. The two main
approximations used in this paper involve the considera
of a scalar order parameter field and the decoupling of
temperature field. Nematic liquid crystals are described b
nonconserved traceless symmetric tensor field. The pres
of the inversion symmetry (n→2n) means that, in addition
to the monopole defects of theO(3) model, the nematic also
possesses stable12 string defects in which the director rotate
throughp on encircling the string. The presence of su
defects generates ak25 structure factor tail at largekL(t)
@2#. The thermal coupling~including the effect of the laten
heat emission at the interface! can have profound conse
quences@12#. We shall address this aspect of the problem
a future paper.

V.P.N. would like to acknowledge a visit to the Physi
Department of Pavia University, which was funded by t
Italian Consiglio Nazionale delle Ricerche~CNR!; scientific
hospitality and financial support are gratefully acknow
edged.



s

s.

v

. E

55 7781BRIEF REPORTS
@1# A. J. Bray, Physica A194, 41 ~1993!; Adv. Phys.43, 357
~1994!.

@2# A. J. Bray, S. Puri, R. E. Blundell, and A. M. Somoza, Phy
Rev. E47, 2261~1993!.

@3# A. P. Y. Wong, P. Wiltzius, R. G. Larson, and B. Yurke, Phy
Rev. E47, 2683~1993!.

@4# M. Zapotocky, P. M. Goldbart, and N. Goldenfeld, Phys. Re
E 51, 1216~1995!.

@5# J. A. N. Filipe, A. J. Bray, and S. Puri, Phys. Rev. E52, 6082
~1995!.
.

.

@6# S. M. Allen and J. W. Cahn, Acta Metall.27, 1085~1979!.
@7# A. J. Bray and K. Humayun, Phys. Rev. E48, 1609~1993!.
@8# V. Popa-Nita and T. J. Sluckin, J. Phys.~France! II 6, 873

~1996!.
@9# P. G de Gennes and J. Prost,The Physics of Liquid Crystals,

2nd ed.~Oxford University Press, Oxford, 1993!.
@10# A. K. Sen and D. E. Sullivan, Phys. Rev. A35, 1391~1987!.
@11# G. F. Mazenko, Phys. Rev. B42, 4487~1990!.
@12# R. J. Braun, G. B. McFadden, and S. R. Coriell, Phys. Rev

49, 4336~1994!.


