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Influence of undercooling on phase-ordering kinetics in nematic liquid crystals
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The undercooling effect on the phase-ordering dynamics of nematic liquid crystals is considered. We assume
the nematic liquid crystal to have a scalar order parameter, and also suppose the system to be isothermal and
initially temperature-quenched into the metastable regime of the isotropic phase. Based on planar domain wall
solutions of the time-dependent Ginzburg-Landau equation, Bray and Humayun's theory of phase-ordering
dynamics is generalized to include the undercooling effect on the late stage of growth.
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When a system is quenched from a high-temperature disatic director, andp(r,t) is the scalar order parameter. In the
ordered phase to a lower temperature where its ordered phaggoblem we consider, we shall suppast® be fixed in space
is thermodynamically favored, it evolves in time toward theand time, so that the relevant physics is given ¢fr,t).
latter (phase-ordering procesdt has been well established within the equal-constant approximation the appropriate
that in the late stages of ordering a scalingimee is entered, | andau—de Gennes free energy functional is
characterized by a single time-dependent length Scél,
such that the domain structure is independent of time when dort )
lengths are scaled Hy(t) [1]. Very recently, there have been F[Q]= f dx[zKTrVQ|?+fp(Q)], 1)
considerable theoreticd®], experimenta[3] and computa-
tional [_4] Qﬁ(_)rts to understand the phase—_ordering kinetics of f,(Q)=a(T—T*)TrQ?—BTrQ3+C(TrQ?)2.  (2)
nematic liquid crystals. So far, however, little effort has been
devoted to the role of a volume driving foréexternal fields \ye take the dynamics to be given by the time-dependent
or undercooling or a symmetry-breaking bias in the initial Ginzpurg-LandauTDGL) equationd,Q= — (8/ 5Q)F[Q]
conditions[5]. The purpose of this Brief Report is t0 inves- \yhere the transport coefficieyt is related to the rotational
tigate the phase-ordering dynamics of a nematic liquid crySyiscosity of the nematic. Scaling the variables in the follow-
tal when its isotropic liquid precursor is .cooled quickly to a-ng way [10] $=6C¢/B, r=24a(T—T*)C/B? and
temperature where the nematic phase is thermodynamical
stable and the isotropic one is metastal$eipercooled
(T*<T<Ty,, WhereTy, is the first order nematic-isotropic
transition temperature, an@i* is the supercooling limjt 9
When T=TN,. (i.e., when the well depths of the bulk free ——V2¢p=—fl(p)=—27¢+64?—4¢°. 3
energy density are equaind for a nonconserved scalar or- at
der parameter, the motion of the interfa@®mmain wal) is ] ] ] ]
purely determined by its local curvatufé] that generates a !N this system of units the distances are szcaled with
domain scald(t)~t¥2 In particular, the detailed shape of §=(24CK/B%)™% and times with t*=16Cg/B°. The
role of the double-well free energy is to establish and mainnématic phase in which the order parameger 1.
tain well-defined domain walls. FGF* <T<T,, (when the In the temperature region<O7<'1, the time- and space-
well depths of the bulk free energy density are not e~ independent  solutions  of Eq.(3) occur at ¢;=0,
motion of the interface is determined not only by its local $2=3(1—7*)/4, and ¢3=3(1+7*)/4, where 7*=(1
curvature but also by a volume driving foré8]. Our pur- —87/9)"% The solutions¢; and ¢; correspond, respec-
pose is to investigate the effect of this volume driving forcetively, to the isotropic and nematic minima df,, with
(in fact, the undercoolingAT=Ty,—T) on the phase- fn(nematicxfy(isotrop); or, equivalently, the isotropic
ordering kinetics. phase is metastable, whereas the nematic phase is stable.
The order parameter for a nematic liquid crystal is a Considering thay depends on one spatial variable only
traceless Symmetric second-rank tensw] Qij(rvt) (flat domain wall, and Supposing that the front advances

:¢)(r,t)(3ninj/2_ 5”/2) where the unit vectar is the nem- with VelOCity v, we look for solutions of the form
#(g,t)=d(g—vt)=d(g’), whereg is a coordinate normal

to the interface. EquatiofB) yields ¢"+v ¢'=f,(¢), sub-
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p=24°C3f,/B*, and eliminating overbars, the correspond-
ing dimensionless form of the TDGL equation is given by
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¢()= ¢,. This ordinary differential equation has the solu- (p%)—(p)?)1?
tion ¢(g')=¢3(1—tankg’/wg)/2, with the characteristic T
thickness of the interfacav,=+2/¢; and its velocity
v=3(37*—1)/2°” In the flat domain wall case the driving
force for the nematic growth is the difference between iso-
tropic and nematic minima of,, generated by the under-
coolingAr=1-r.

In approximate treatment§Gaussian closure” schemgs
of Eq. (3) for the general case, a new fiehl(x,t) is intro-
duced, which varies smoothly on the domain scale, and
whose zeros define the positions of the walls. Generalizing
the Mazenko approximatioril] (see alsd5]), the transfor-

<m> 1/2
erfo( - (2co<o,t>)”2) )

<m> —1/2
% e”@( (2CO(O.t>)“2)) ‘ @

mation ¢(m) is defined by the flat moving interface profile vv_here the argument of the complementary error function is

function which satisfies ¢"(m)+v g’ (m)=f.(¢) with 9N bY
boundary conditiongy(— ) = ¢35 and ¢() = ¢4. With this
choice for¢(m), rewriting Eq.(3) in terms ofm, gives
(m)  mg(0) a4
5 ¢”( ) (2C0(0,t))1/2_(2A)ll2(8ﬂ-t)
m m
—=V’m-——(1—-|Vm|?) —v. 4 12
ot qﬁ'(m)( [Vmf5 = @ —v(9> pia :dtrt/—(d+2)/4, )
0

The principal role of the double-well “potentialf,(¢) is to

establish and maintain well-defined interfaces. It follows that ) ) ) ) 20(d+2)

the detailed form off,(¢) is irrelevant to the large-scale With d the spatial dimensionality ant,~(Ad)™™" " a
structure. Following Bray and Humayuf¥], we choose s_h_ort—tlm_e cutoff. The_ blgmo(O) mtheﬂ:nltlal Gaussian con-
#(m) to satisfy¢”(m)=—mg’ (m), which is equivalent to dltlon_s gives a contrlbutlon_ of ordetf_j for any d, but the
a particular form of the potentiffor a discussion of this Ccontribution fr?/rzn the velocityor equivalently from the un-
approximation, se5]). Locating the center of the wall at dercooling is t™= for d<1/22 (when times of ordc(;,\/'z dominate
m=0, i.e., $(0)= ¢3/2, we obtain the wall profile function the integral in Eq(8), t*“Int/ty for d=2, andt™ for d>2
S(m) = paerfc(m/y2)/2, where erfc is the complementary (when times of ordet, dominate the integral Thus, for

error function. After Fourier transformation, E@) becomes ~ large t, the velocity (or the undercoolingdominates over
my(0) for d<2 (continues to have an effect at late times

whereas ford>2 both terms are of the same ordére ve-
locity has all its effect at early times of ordgy).
amy(t) ) It is to be noted that the introduction of a magnetic field
=[—=k“+a(t) Jm(t) —v & o, (5  has the same consequence in the sense that the symmetric
ot q Yy
double-well potential also becomes asymmetric, which gen-
erates a volume driving force of the interface. For this reason
our results are similar to those obtained . The two main
wherea(t)=1—(|Vm|?). Solving Eq.(5) for k#0 compo- approximations used in this paper involve the consideration
nents ofm, one finds the equal-time pair correlation function Of @ scalar order parameter field and the decoupling of the
in the scaling fgime C(12)=arcsing)/2m, where 1 and 2 temperature field. Nematic liquid crystals are described by a
are usual shorthand for space-time poin@t() and (; t) nonconserved traceless symmetric tensor field. The presence
and y, is the normalized correlatoyo=exp(’—r2/8t). Tzﬁus’ of the inversion symmetryn— —n) means that, in addition

the k# 0 components ofm are unchanged by the velocity or to the monopole defects of ﬂ@(?) quel, the nematic also
A . . ossesses stabjestring defects in which the director rotates
equivalently by the undercooling. In this case the well-depth S )
" 7 o . through 7 on encircling the string. The presence of such
of the “potential” f,(¢) are equal, the only driving force is

. i defects generates ki ° structure factor tail at largé&L(t)
tghrﬁv:lr:;[]elr;il\::[el]curvature which generates the well-knaith [2]. The thermal couplingincluding the effect of the latent

In the scaling fgime, solving Eq.(5) for k=0 compo- heat emission at the interfgcean have profound conse-
g rgime, g EQ. . P guence$12]. We shall address this aspect of the problem in
nents ofm, we obtain the expectation value &f a future paper
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